SMC PROTOCOL FOR DISTRIBUTED K- ANONYMITY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy-Preserving Distributed k-Anonymity

k-anonymity provides a measure of privacy protection by preventing re-identification of data to fewer than a group of k data items. While algorithms exist for producing k-anonymous data, the model has been that of a single source wanting to publish data. This paper presents a k-anonymity protocol when the data is vertically partitioned between sites. A key contribution is a proof that the proto...

متن کامل

KANIS: Preserving k-Anonymity Over Distributed Data

In this paper we describe KANIS, a distributed system designed to preserve the privacy of multidimensional, hierarchical data that are dispersed over a network. While allowing for efficient storing, indexing and querying of the data, our system employs an adaptive scheme that automatically adjusts the level of indexing according to the privacy constrains: Efficient roll-up and drill-down operat...

متن کامل

k-Anonymity

To protect respondents’ identity when releasing microdata, data holders often remove or encrypt explicit identifiers, such as names and social security numbers. De-identifying data, however, provide no guarantee of anonymity. Released information often contains other data, such as race, birth date, sex, and ZIP code, that can be linked to publicly available information to re-identify respondent...

متن کامل

Approximation Algorithms for k-Anonymity

We consider the problem of releasing a table containing personal records, while ensuring individual privacy and maintaining data integrity to the extent possible. One of the techniques proposed in the literature is k-anonymization. A release is considered k-anonymous if the information corresponding to any individual in the release cannot be distinguished from that of at least k − 1 other indiv...

متن کامل

($k$,$\epsilon$)-Anonymity: $k$-Anonymity with $\epsilon$-Differential Privacy

The explosion in volume and variety of data offers enormous potential for research and commercial use. Increased availability of personal data is of particular interest in enabling highly customised services tuned to individual needs. Preserving the privacy of individuals against reidentification attacks in this fast-moving ecosystem poses significant challenges for a one-size fits all approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Communication Networks and Security

سال: 2013

ISSN: 2231-1882

DOI: 10.47893/ijcns.2013.1073